snpGeneSets: an *R* Package for Genome-wide Study Annotation

Hao Mei and Lianna Li

Version 1.10, 09-30-2015

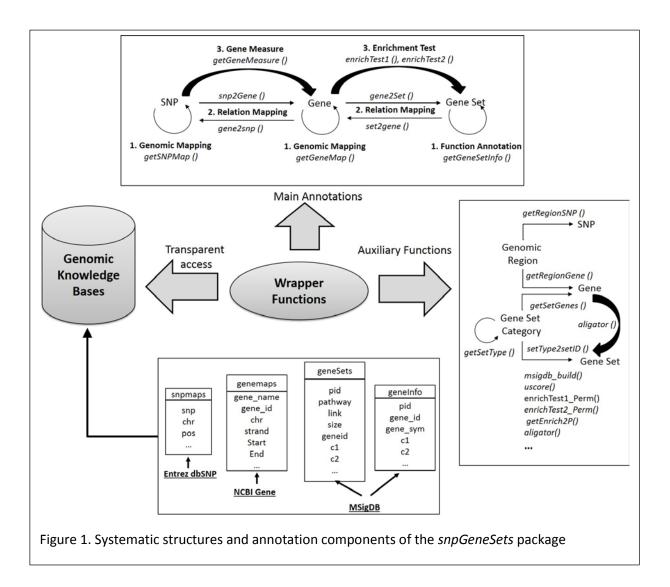
Contents

In	troduction	2
In	stallation	4
In	stallation of MSigDB gene sets	4
ld	entification of SNP and gene map positions from an updated reference genome	5
.1	Example: Identification of T2D-GWAS SNP map positions	5
.2	Example: Identification of gene map positions for T2D-GWES	7
Τv	vo-way mapping between SNP, gene and pathway	8
.1	Mapping between SNP and Gene	8
.2	Mapping between Gene and Pathway	12
Ge	ene measures by SNP associations and U-score calculation for gene effects	14
Pa	athway Enrichment Analysis I of candidate genes	17
' .1	Example: Enrichment analysis I of T2D-GWAS	17
' .2	Example: Enrichment analysis I of T2D-GWES	22
Pa	athway Enrichment Analysis <i>II</i> of GWS genes	24
8.1	Example: Enrichment analysis II of T2D-GWAS	24
8.2	Example: Enrichment analysis II of T2D-GWES	29
Pa	athway Enrichment Analysis of GWAS by ALIGATOR	30
	In In Id I.1 I.2 Th 5.2 G 7.1 7.2 Pa 3.1 3.2	A.2 Example: Identification of gene map positions for T2D-GWES

1. Introduction

Genome-wide studies (GWS) of SNP association and differential gene expression have generated abundant results, and the next-generation sequencing technology has further boosted the increasing. Effective interpretation of these results and understanding of the genetic effects often require massive annotation and post-analysis over genome, which is however a computationally challenging task. To address this challenge, the *snpGeneSets* package is developed to simplify post-annotation and analysis of GWS results. The package integrates local copies of parsed NCBI dbSNP [1] and Entrez Gene [2] databases based on two recent genome builds of GRCh37/hg19 and GRCh38/hg38 and MSigDB gene sets V4.0 [3], and provides three types of main annotations: 1) genomic mapping annotation for SNPs and genes, and function annotation for gene sets; 2) bidirectional mapping relation between SNPs and genes, and between genes and gene sets; and 3) gene effect measures from SNP associations and enrichment analysis-based annotations for identifying function pathways from genes. The auxiliary functions are also provided to facilitate the annotation and analysis for genome-wide study. The package structures and components are summarized at the Figure 1.

Note: The examples below are from the old version of V1.10. The updated manual based on new version is not ready yet. If there is any mistake, please load the help document under R by help(package="snpGeneSets") and refer to the description of related functions for usage.



2. Installation

Before the installation of new version, an old version of *snpGeneSets* can be removed by system command:

R CMD REMOVE snpGeneSets

Or by R command

>remove.packages("snpGeneSets")

The package source file of <u>snpGeneSets_1.10.tar.gz</u> and windows binary file of <u>snpGeneSets_1.10.zip</u> can be downloaded from <u>https://www.umc.edu/biostats_software/</u>.

Installation from the source file of *snpGeneSets_1.10.tar.gz* can be completed through the system command:

R CMD INSTALL snpGeneSets_1.10.tar.gz

Installation from the binary file of $snpGeneSets_1.10.zip$ for Windows can be completed through the GUI interface: "Packages" \rightarrow " Install package(s) from local zip files...".

Notes: The package is integrated with parsed NCBI dbSNP 138 (GRCh37/hg19) and 142 (GRCh38/hg38) [1], Entrez gene 105 (GRCh37/hg19) and 106 (GRCh38/hg38) [2]. The installation will automatically download and install the integrated databases based on GRCh37 and GRCh38, which requires high-speed internet access. The SNP annotation data based on GRCh37/hg19 includes common variants with unique position from NCBI dbSNP and those low-frequency variants from *1000* Genome project. The SNP annotation data based on GRCh38/hg38 includes common variants with unique position from NCBI dbSNP and those low-frequency variants with unique position from NCBI dbSNP and those low-frequency variants from *1000* Genome project. The SNP annotation data based on GRCh38/hg38 includes common variants with unique position from NCBI dbSNP, but does not have low-frequency variants from 1000 Genome project.

3. Installation of MSigDB gene sets

Due to the license issue of MSigDB gene sets, the data is not directly provided by the *snpGeneSets* package. Instead, the user needs to visit the MSigDB download web at http://www.broadinstitute.org/gsea/downloads.jsp and registers with the email.

To install the MSigDB 4.0, the zipped file of *msigdb v4.0 files to download locally.zip* ("MSigDB version 4.0 - zipped msigdb.xml, gmt and chip files") has to be downloaded and extracted locally. All

required *gmt* files can be founded at the extracted directory of "msigdb_v4.0_GMTs". The installation can be completed by function *msigdb_build*:

> library(snpGeneSets)

> msigdb_build(gmt_dir="~/tmp/msigdb_v4.0_files_to_download_locally/msigdb_v4.0_GMTs")

The argument of *gmt_dir* shows where all the extracted *gmt* files can be found. The function will parse all *gmt* files and build the integrated database.

4. Identification of SNP and gene map positions from an updated reference genome

Many GWAS of SNP associations were based on an old reference genome build, e.g. NCBI36. The *snpGeneSets* can quickly convert old map positions for a large number of GWAS SNPs to updated positions based on a recent genome build, GRCh37 or GRCh38, simultaneously by function of *getSNPMap()*. Map positions of GRCh37 and GRCh38 for genes can be identified by function of *getGeneMap()*.

The *snpGeneSets* comes with two GWS data, T2D-GWAS and T2D-GWES. The T2D-GWAS contains GWAS SNP association for T2D in Finnish population from dbGaP (Analysis ID: pha002839) [5], and T2D-GWES presents differential expression p-values at pancreases of *10* control and *10* T2D human subjects [6], which we obtained by analysis of GEO expression data (GDS3782) using the linear models with empirical Bayes adjusting method [7].

4.1 Example: Identification of T2D-GWAS SNP map positions

The T2DGWAS results can be loaded into R by the function *data()*. There are total *306,368* SNPs with GWAS association p-values available. Identifiers of these SNPs and their map positions are obtained based on old genome build. Genomic map positions of these SNPs based on a recent map build can be obtained simultaneously by function of *getSNPMap()* and reference genome build can be specified by parameter *GRCh=37* (in default) or *GRCh=38*.

> snpMapAnn<- getSNPMap(T2DGWAS\$snp)</pre>

> snpMapAnn38<- getSNPMap(T2DGWAS\$snp, GRCh=38)</p>

Depending on the computer performance, the map annotation may take up to 1 minute for completing the process.

> names(snpMapAnn)
[1] "rsid_map" "other"

The returned result variables of *snpMapAnn* and *snpMapAnn38* are a list and it contains two components, a data frame of *'rsid_map'* and a character vector of *'other'*. The *'rsid_map'* contains all SNP identifiers that can be found for their genomic positions. The *'other'* contains the SNP identifiers that cannot be found for map positions.

> class(snpMapAnn\$rsid_map) [1] "data.frame" > dim(snpMapAnn\$rsid_map) [1] 306252 3 > dim(snpMapAnn38\$rsid map) [1] 306045 - 3 > head(snpMapAnn\$rsid map) chr pos snp 1 4 21618674 rs10000010 4 95733906 rs10000023 2 3 4 103374154 rs10000030 4 2 237752054 rs1000007 5 4 21895517 rs10000092 4 157574035 rs10000121 6 > head(snpMapAnn38\$rsid map) pos chr snp 1 4 21617051 rs10000010 4 94812755 rs10000023 2 3 4 102452997 rs10000030 4 2 236843411 rs1000007 5 4 21893894 rs10000092 6 4 156652883 rs10000121 > class(snpMapAnn\$other) [1] "character"

> length(snpMapAnn\$other)
[1] 116

```
> length(snpMapAnn38$other)
[1] 323
> head(snpMapAnn$other)
[1] "rs4649592" "rs41332249" "rs1079109" "rs7549320" "rs7412106"
[6] "rs12619064"
> head(snpMapAnn38$other)
[1] "rs4649592" "rs41332249" "rs1079109" "rs41511844" "rs17559902"
```

```
[6] "rs4297265"
```

The mapping annotation based on GRCh37 showed *306,252* SNPs have been identified for genomic map positions and *116* SNPs cannot be identified, which may be due to alteration or obsolete of these rs ids. For reference genome GRCh38, total *306,045* SNPs have been identified, but *323 SNPs* are not.

4.2 Example: Identification of gene map positions for T2D-GWES

```
> data("T2DGWES")
> class(T2DExpression)
[1] "data.frame"
> dim(T2DExpression)
[1] 20185 3
> head(T2DExpression)
     symbol gene id
9199
     MDFIC 29969 6.399265e-07
3613 PPP2CB
              5516 1.209549e-06
3503 FXYD3
               5349 1.955109e-06
2292 IGFBP3
               3486 2.853953e-06
6984 UNC13B 10497 2.876275e-06
11673 RRAGD
              58528 5.047322e-06
```

The T2D-GWES data can be loaded by the *data("T2DGWES")* command, and the results of *T2DExpression* variable are stored as a data frame that contains differential expression p-values for *20,185* genes. The *T2DExpression* contains gene symbol ('symbol'), its Entrez gene ID ('gene_id') and the differential expression p-value ('p'). Map positions of T2D-GWES genes can be identified by *getGeneMap()* function with reference genome specified at parameter of *GRCh* that is 37 in default.

> geneMapAnn<-getGeneMap(T2DExpression\$gene_id)
> names(geneMapAnn)
[1] "gene_map" "other"
> class(geneMapAnn\$gene_map)
[1] "data.frame"
> dim(geneMapAnn\$gene_map)
[1] 19299 6

```
> head(geneMapAnn$gene_map)
   chr
                  start
                                        end strand gene name gene id
1 19 58858172 58864865 - A1BG 1
2 12 9220304 9268558 - A2M 2

      2
      12
      5220501
      5200505
      FAIL

      3
      8
      18027971
      18081198
      +
      NAT1

      4
      8
      18248755
      18258723
      +
      NAT2

      5
      14
      95078639
      95090395
      +
      SERPINA3

      6
      3
      151531769
      151546276
      +
      AADAC

                                                              NAT1
                                                                                       9
                                                                                       10
                                                                                       12
                                                               AADAC
                                                                                    13
> class(geneMapAnn$other)
[1] "numeric"
> length(geneMapAnn$other)
[1] 920
> head(geneMapAnn$other)
[1] 100130051 100129513 5558 727770 100132999 100134017
> geneMapAnn38<-getGeneMap(T2DExpression$gene_id, GRCh=38)
> dim(geneMapAnn38$gene map)
[1] 19283 6
> head(geneMapAnn38$gene map)
   chr
                  start
                                        end strand gene name gene id
1 19 58346806 58353499 - A1BG 1
      12 9067708 9115962
8 18170462 18223689
                                                        _
2 12
                                                                     A2M
                                                                                          2
                                                               NAT1
NAT2
                                                    +
3
                                                                                          9

      3
      6
      18170402
      18223089
      +
      NA11

      4
      8
      18391245
      18401213
      +
      NAT2

      5
      14
      94612377
      94624053
      +
      SERPINA3

      6
      3
      151813974
      151828488
      +
      AADAC

                                                                                       10
                                                                                        12
                                                                                      13
> length(geneMapAnn38$other)
[1] 927
> head(geneMapAnn38$other)
```

[1] 100130051 100129513 727770 100132999 100134017 730184

The returned annotation variables of *geneMapAnn* and *geneMapAnn38* are a list with two components: "*gene_map*" and "*other*". The "*gene_map*" is a data frame with 19,299 genes from GRCh37 and 19,283 genes from GRCh38, and the map position of a gene is defined by chromosome ('chr'), transcription start position ('start') and transcription termination position ('end'). The "*other*" component is a numeric vector and it contains 920 Entrez gene IDs for GRCh37 and 927 genes for GRCh38 that are not identified for their map positions.

The *getGeneMap()* function has a second argument of logical variable, *isGeneID*, that determines if the searched genes are character vector of gene symbol or numerical vector of Entrez Gene ID.

5. Two-way mapping between SNP, gene and pathway

5.1 Mapping between SNP and Gene

Fast mapping of GWAS SNPs to genes is important for interpreting and understanding GWAS results. *snp2Gene* identifies genes spanning the target SNPs, based on user-defined gene boundary and SNP positions.

```
> T2DGWAS[T2DGWAS$p==min(T2DGWAS$p),]
snp p
70765 rs886374 2.37573e-06
```

The top SNP hit of the T2D-GWAS is the *rs886374* with association p-value of *2.4E-06*. We can apply the *snp2Gene()* function to obtain the genes that cover this SNP based on either GRCh37 (in default) or GRCh38.

> rs886374 map<-getSNPMap("rs886374")\$rsid map</pre> > rs886374 map chr pos snp 1 4 7738369 rs886374 > rs886374 gene<-snp2Gene(rs886374 map) > rs886374 gene \$map gene_id snp 57537 1 rs886374 \$other character(0) > getGeneMap(57537)\$gene_map chr start strand gene_name gene id end 1 4 7194374 7744564 + SORCS2 57537 > rs886374_map38<-getSNPMap("rs886374", GRCh=38)\$rsid_map > rs886374_map38 chr pos snp 1 rs886374 4 7736642 > rs886374 gene38<-snp2Gene(rs886374 map38, GRCh=38) > rs886374_gene38 \$map snp gene id 1 rs886374 57537 \$other character(0)

> getGeneMap(57537,GRCh=38)\$gene_map								
	chr	start	end	strand	gene_name	gene_id		
1	4	7192647	7742837	+	SORCS2	57537		

The *snp2Gene()* function requires a data frame of SNP map including '*chr*', '*pos*' and '*snp*' as the input to perform the SNP-Gene mapping. We first obtained the data frame of *rs886374_map* (GRCh37) and *rs886374_map38* (GRCh38) by *getSNPMap()* function. The *rs886374_gene* and *rs886374_gene38* returned by *snp2Gene()* function showed that SNP *rs886374* mapped to Entrez gene ID *57537*. The *getGeneMap()* function showed that the gene ID of *57537* is *SORCS2*, which is at Chromosome 4 from *7,194,374* to *7,744,564* bp for GRCh37 and from *7,192,647* to *7,742,837* bp for GRCh38.

The *snp2Gene()* function can be applied to map all T2D-GWAS SNPs to genes simultaneously. The mapping may take >1 hour depending on the number of GWAS SNPs. To speed the process, GWAS SNPs can be splitted to map *100,000* SNPs every time.

> snpGeneMapAnn<-snp2Gene(snpMapAnn\$rsid map)</pre> > names(snpGeneMapAnn) [1] "map" "other" > class(snpGeneMapAnn\$map) [1] "data.frame" > dim(snpGeneMapAnn\$map) [1] 172041 2 > head(snpGeneMapAnn\$map) snp gene id 1 rs10000010 80333 2 rs10000023 658 rs10000092 80333 5 10 rs10000169 57619 11 rs1000022 171425 14 rs10000300 54502 > length(unique((snpGeneMapAnn\$map\$gene id))) [1] 24339 > class(snpGeneMapAnn\$other) [1] "character" > length(snpGeneMapAnn\$other) [1] 146506 > head(snpGeneMapAnn\$other) [1] "rs10000030" "rs1000007" "rs10000121" "rs1000014" "rs10000141" [6] "rs1000016" > snpGeneMapAnn38<-snp2Gene(snpMapAnn\$rsid map, GRCh=38)</p>

> head(snpGeneMapAnn38\$map)

The *snp2Gene()* function returned the SNP-gene mapping annotation results of *snpGeneMapAnn* (GRCh37) and *snpGeneMapAnn38* (GRCh38) for 306,252 GWAS SNPs. The *snpGeneMapAnn* and *snpGeneMapAnn38* are a list with two components: a data frame of "*map*" and a character vector of "*other*". The *snpGeneMapAnn\$map* showed that 172,041 SNPs were successfully mapped to 24,339 genes and *snpGeneMapAnn\$other* indicated that 146,506 SNPs are out of gene boundary. The gene boundary is defined by two arguments, '*up*' for the upstream region and '*down*' for the downstream region with default value of 2,000 bp for both. Depending on the computer performance, the SNP-gene mapping for all T2D-GWAS SNPs may take up to 30 minutes. The mapping results can be directly found at '*snpGeneMapAnn\$map*' variable from "*T2DGWAS*" data, which is the same as *snpGeneMapAnn\$map*.

In contrast to the *snp2Gene()* function, the *getRegionSNP()* function performs the reverse mapping and it shows annotated common SNPs spanned by the target gene or genomic region. The *getRegionSNP()* function takes a data frame including *'chr'*, *'start'* and *'end'* as the input.

```
> chr=c("14","1","18","16","16")
```

> start=c(78786077, 213910494, 57850422, 53813450, 53820527)

> end=start+1000

- > regionDF=data.frame(chr=chr, start=start, end=end, stringsAsFactors=FALSE)
- > regionSNPs<-getRegionSNP(regionDF)</pre>

> class(regionSNPs)
[1] "data.frame"

> dim(regionSNPs) [1] 73 3

> head(regionSNPs)

	chr	pos	snp
1	1	213910494	rs1704198
2	1	213910566	rs10864067
3	1	213910585	rs141152028
4	1	213910675	rs79688837
5	1	213910826	rs182273155
6	1	213910983	rs186584814

>regionSNPs38<-getRegionSNP(regionDF, GRCh=38)

> dim(regionSNPs38) [1] 24 3

> head(regionSNPs38)

	chr	pos	snp
1	1	213910556	rs75780458
2	1	213910610	rs853744
3	1	213910621	rs59335652
4	1	213910799	rs701894
5	1	213911041	rs12087028
6	1	213911081	rs919894

For the example above, the *getRegionSNP()* function returned the results to a data frame variable of *regionSNPs* for mapping annotations of *73* SNPs (GRCh37) and *regionSNPs38* for mapping annotations of *24* SNPs (GRCh38)

5.2 Mapping between Gene and Pathway

For a significant gene from GWAS or GWES, identification of its implicated pathways may shed light on novel gene function for disease genetics, and the mapping of gene to pathway is implemented by the *gene2Set()* function.

> T2DExpression[T2DExpression\$p==min(T2DExpression\$p),]					
	symbol	gene_id	p		
9199	MDFIC	29969	6.399265e-07		

The top gene of the T2D-GWES is MDFIC (Entrez gene ID: gene_id=29969) with p-value of 6.4E-07, which acts as a transcriptional activator or repressor. The gene2Set() function can be applied to identify the MSigDB gene sets that include the MDFIC gene.

```
> gid29969_C2<-gene2Set(29969, setType=2)
> length(gid29969_C2)
[1] 45
> head(gid29969_C2)
[1] 4074 4926 4928 4973 5029 5074
> gid29969_C5<-gene2Set(29969, setType=14)
> length(gid29969_C5)
[1] 49
> head(gid29969_C5)
[1] 239 280 301 305 307 343
```

Application of *gene2Set()* function shows that *MDFIC* gene is the component gene of *45* MSigDB gene sets at the category of "C2: curated gene sets" and the component gene of *49* MSigDB gene sets at the category of "C5: GO gene sets". The category of gene sets can be specified by the argument of *'setType'*, which takes the value of category ID from *0* to *19*. The *20* gene-set categories and their description can be shown by *getSetType()* function. The Table 1 below summarizes all categories and their IDs, and *setType=2* and *setType=14* correspond to category of "C2: curated gene sets" and "C5: GO gene sets" respectively.

ID	symbol	name
0	c0	CO: all gene sets
1	c1	C1: positional gene sets
2	c2	C2: curated gene sets
3	c2_cgp	C2_CGP: chemical and genetic perturbations
4	c2_cp	C2_CP: Canonical pathways
5	c2_biocarta	C2_CP:BIOCARTA: BioCarta gene sets
6	c2_kegg	C2_CP:KEGG: KEGG gene sets
7	c2_reactome	C2_CP:REACTOME: Reactome gene sets
8	с3	C3: motif gene sets
9	c3_mir	C3_MIR: microRNA targets
10	c3_tft	C3_TFT: transcription factor targets
11	c4	C4: computational gene sets
12	c4_cgn	C4_CGN: cancer gene neighborhoods
13	c4_cm	C4_CM: cancer modules
14	c5	C5: GO gene sets
15	c5_bp	C5_BP: GO biological process
16	c5_cc	C5_CC: GO cellular component
17	c5_mf	C5_MF: GO molecular function
18	c6	C6: oncogenic signatures
19	с7	C7: immunologic signatures

Table 1. Summary of 20 MSigDB gene-set categories

In contrast to *gene2Set()* function, the *getGeneSetInfo()* function identifies all member genes of a pathway and provides the mapping of pathway to genes. The *gid29969_C2* showed that the *MDFIC* gene is a member gene of gene-set *ID=5029*. Description of the pathway can be shown by the *getGeneSetInfo()*.

The *getGeneSetInfo()* function below returns the results to *pid5029Ann* which contains 5 components: the *'setID'* of gene set identifier, the *'set_name'* of the gene set name, the *'set_link'* of the MSigDB web link describing the gene set, the *'set_type'* of the gene-set category including the gene set and the *'set_geneid'* of Entrez gene IDs belonging to the gene set.

```
> pid5029Ann<-getGeneSetInfo(5029)
```

```
> names(pid5029Ann)
[1] "setID" "set_name" "set_link" "set_type" "set_geneid"
> pid5029Ann
```

\$setID [1] 5029									
\$set_name [1] "AKL_HI	\$set_name [1] "AKL_HTLV1_INFECTION_DN"								
\$set_link [1] "http://www.broadinstitute.org/gsea/msigdb/cards/AKL_HTLV1_INFECTION_DN"							TION_DN"		
\$set_type c1 FALSE c2_reactome FALSE c4_cr FALSE c7 FALSE	E E	c2 TRUE c3 FALSE c5 FALSE	c2_c TR c3_m FAL c5_ FAL	UE ir SE bp	c2_cp FALSE c3_tft FALSE c5_cc FALSE		FALSE FALSE C4 FALSE C5_mf FALSE	c4_ FA	egg LSE cgn LSE c6 LSE
\$set_geneic [1] 22934		5774	1848	7273	54504	25957	10632	5367	917
[11] 5771	163486	9218	892	55076	57515	51646	158471	10656	3001
[21] 5175	1846	5743	9659	2015	10129	942	3002	23097	3725
[31] 2534		29103	4212	27230	29909	10314	51761	51465	301
[41] 23376		84864	4128	55540	10049	51389		23266	3688
[51] 1288		10142	5168	8477	4208	10447		3359	26123
[61] 7259	5569	29969	51150	28683	10225	26228	5980		

6. Gene measures by SNP associations and U-score calculation for gene effects

A gene typically contains associations of multiple SNPs from a GWAS, and the *getGeneMeasure()* function provides four measures (*minP*, 2*ndP*, *simP* and *fishP*) of the gene effect by summarizing SNP association *p*-values. *U*-score of a gene measure represents percentage of genome-wide genes with effects stronger than the given gene and it can be calculated by *uscore()* function.

For *K* SNPs mapped to a gene with GWAS p-values $(p_1, p_2, ..., p_k)$, the ordered p-value is defined as $p_{(1)} \leq p_{(2)} \leq ... \leq p_{(k)}$, where $p_{(1)} = \min\{p_1, p_2, ..., p_k\}$ and $p_{(k)} = \max\{p_1, p_2, ..., p_k\}$. Four gene measures are calculated respectively as $minP = p_{(1)}$, $2ndP = p_{(2)}$, $simP = min_i\{Kp_{(i)}/i\}$ and $fishP = Pr(X \geq x = -2\sum_{i=1}^{K} log(p_i)) = \Psi(x)$, where Ψ is the chi-square distribution function with df = 2K. Uniform score (*U*-score) is calculated as $U_i = (\sum_j I(M_j < M_i) + 0.5 \cdot \sum_j I(M_j = M_i))/L$, where M_i is gene measure of the *i*-th gene and *L* is the total number of genes.

The *getGeneMeasure()* takes an arguments of '*snpGeneP*'. The '*snpGeneP*' is a data frame containing column of '*snp*' for rs id, column of '*gene_id*' for Entrez gene IDs spanning the '*snp*', and column of '*p*' for SNP association p-value.

> snpGeneMap <- snpGeneMapAnn\$map #snpGeneMap can be found from data T2DGWAS</p>

> snpGeneP<-merge(snpGeneMap, T2DGWAS, all=FALSE)</pre>

> head(snpGeneP)

snpgene_idp1rs10000010803330.24897082rs100000236580.20594053rs10000092803330.70707084rs10000169576190.50550755rs10000221714250.85322246rs10000300545020.5191723

> T2DGWASGeneO<-getGeneMeasure(snpGeneP)

> head(T2DGWASGene0)

gene id minp sndp simp fishp 1 0.14992377 0.61819639 0.29984753 0.092682331 1 2 2 0.63210108 0.65196227 0.79051801 0.585242462 3 3 0.33866379 0.33866379 0.33866379 0.141139178 9 0.28229107 0.43147721 0.80126634 0.265557328 4 10 0.04538995 0.05860277 0.08790415 0.003165650 5 6 12 0.10190141 0.13136668 0.19705002 0.008034187

> minp_uscore<-uscore(T2DGWASGene\$minp)

> head(minp_uscore)

[1] 0.3713382 0.8397428 0.6154937 0.5545215 0.1592300 0.2841735

> T2DGWASGene <- T2DGWASGene0

> for (ms in c("minp", "sndp", "simp", "fishp")) T2DGWASGene[[ms]]<-uscore(T2DGWASGene[[ms]])

> head(T2DGWASGene)

	gene id	minp	sndp	simp	fishp
1	- 1	0.3713382	0.7145733	0.28760426	0.4086035
2	2	0.8397428	0.7440528	0.74729857	0.8902790
3	3	0.6154937	0.4576400	0.32357533	0.4921936
4	9	0.5545215	0.5503307	0.75900818	0.6498418
5	10	0.1592300	0.1039279	0.08642508	0.1212252
6	12	0.2841735	0.2105469	0.19181150	0.1590246

The '*snpGeneMap*', '*snpGeneP*' and '*T2DGWASGene*' can be manually created as above. These variables are also pre-generated and automatically loaded with 'T2DGWAS' data. The *T2DGWASGene0* contains measures of *minP*, *2ndP*, *simP* and *fishP* for every T2DGWAS gene. The *minp_uscore* is the uniform score for *minp* measure and U-score can also be similarly generated for other three measures. The *T2DGWASGene* contains U-scores for every gene measure.

We examined 9 genes that were previously reported to have associations with T2D, and their measures (*'gmeasure'*) and U-scores (*'gscore'*) were shown in the Figure 1.

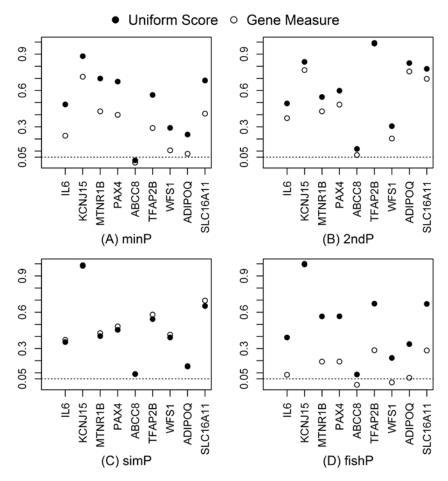


Figure 1. Gene measures and uniform scores of 9 T2D-GWAS genes

> genes<-c("IL6", "KCNJ15", "MTNR1B", "PAX4", "ABCC8", "TFAP2B", "WFS1", "ADIPOQ", "SLC16A11")
> genes<-getGeneMap(genes, FALSE)\$gene_map[,c("gene_name", "gene_id")]</pre>

> gmeasure<-merge(genes, T2DGWASGene0,all=FALSE)

> qmeasure

	5					
	gene id	gene name	minp	sndp	simp	fishp
1	3569	IL6	0.226553618	0.37160095	0.37160095	0.0841875404
2	3772	KCNJ15	0.713388908	0.76853023	0.98839315	0.9947997402
3	4544	MTNR1B	0.427681378	0.42768138	0.42768138	0.1924510584
4	5078	PAX4	0.398935200	0.48357556	0.48357556	0.1929153130
5	6833	ABCC8	0.004314517	0.06752818	0.09060486	0.0008465779
6	7021	TFAP2B	0.290199840	0.98718080	0.58039968	0.2864797108
7	7466	WFS1	0.105901871	0.20330600	0.41484572	0.0209583156
8	9370	ADIPOQ	0.077799163	0.75677862	0.15559833	0.0588767430
9	162515	SLC16A11	0.408816921	0.69633535	0.69633535	0.2846736745

> gscore<-merge(genes, T2DGWASGene,all=FALSE)</pre>

> gscore

	gene id	gene name	minp	sndp	simp	fishp
1	3569		0.48488023	0.4930564	0.35365052	0.39165537
2	3772	KCNJ15	0.88304778	0.8361272	0.98206582	0.99969185
3	4544	MTNR1B	0.69865237	0.5464275	0.40295411	0.56549160
4	5078	PAX4	0.67338428	0.5981141	0.45464070	0.56635441
5	6833	ABCC8	0.02368626	0.1180205	0.08909569	0.08630182
6	7021	TFAP2B	0.56331402	0.9924607	0.54346933	0.67104236
7	7466	WFS1	0.29148691	0.3056617	0.39186080	0.22287276
8	9370	ADIPOQ	0.23651341	0.8262459	0.15142364	0.33705165
9	162515	SLC16A11	0.68275196	0.7788734	0.65144418	0.66870044

The calculation showed that only ABCC8 has all 4 gene measures and U-scores around or smaller then 0.05. The results presented that a stronger gene measure (i.e. smaller p-values) tends to have a smaller *U*-score. However, different gene measures for the same gene have varied *U*-scores, showing inconsistent measures of gene effects over genome. The calculation of *U*-score will unify these gene measures for comparability with the same interpretability. For example, the *minP*, *2ndP*, *simP* and *fishP* presented summary SNP association p-values of *0.004*, *0.068*, *0.091* and *0.0008* for ABCC8 gene respectively, and the corresponding *U*-scores indicated that *2.4%*, *11.8%*, *8.9%* and *8.6%* GWAS genes have stronger gene effects than ABCC8.

For T2D-GWES, differential expression p-value is used to directly measure gene effect and calculate *U*-scores of the selected 9 genes. The p-value of ABCC8 is *3.4E-04*, showing only 0.4% of genes over genome with stronger measured effect than the ABCC8.

>data(T2DGWES)

> escore<-uscore(T2DExpression\$p)</pre>

> T2DExpression\$us<-escore

> T2DExpression[T2DExpression\$symbol %in% genes\$gene_name,]

symbol	gene_id	р	us
ABCC8	6833	0.0003363277	0.004235819
KCNJ15	3772	0.0268452946	0.091825613
PAX4	5078	0.1437856302	0.270027248
SLC16A11	162515	0.1471156303	0.273792420
MTNR1B	4544	0.1978929899	0.331904880
WFS1	7466	0.2134392425	0.346569235
IL6	3569	0.3036799699	0.440351746
TFAP2B	7021	0.4280112100	0.552068368
ADIPOQ	9370	0.8169270613	0.865320783
	ABCC8 KCNJ15 PAX4 SLC16A11 MTNR1B WFS1 IL6 TFAP2B	KCNJ153772PAX45078SLC16A11162515MTNR1B4544WFS17466IL63569TFAP2B7021	ABCC868330.0003363277KCNJ1537720.0268452946PAX450780.1437856302SLC16A111625150.1471156303MTNR1B45440.1978929899WFS174660.2134392425IL635690.3036799699TFAP2B70210.4280112100

7. Pathway Enrichment Analysis I of candidate genes

The type I analysis is a generalized pathway enrichment analysis that aims to identify gene sets enriched for a candidate list of genes. The list can be previously identified susceptibility genes or top genes from a GWAS or GWES. The analysis can be performed by function *enrichTest1()*.

7.1 Example: Enrichment analysis I of T2D-GWAS

For *T2DGWAS* data, the top *5%* genes were selected as candidate genes by measures of *minP*, *2ndP*, *simP* and *fishP* respectively, and they were tested for pathway enrichment at *186* KEGG gene sets.

> topMinpGenes<-

T2DGWASGene[order(T2DGWASGene\$minp),][1:trunc(nrow(T2DGWASGene)*0.05),"gene_id"] > topsndpGenes<-

T2DGWASGene[order(T2DGWASGene\$sndp),][1:trunc(nrow(T2DGWASGene)*0.05),"gene_id"]

> topsimpGenes<-

T2DGWASGene[order(T2DGWASGene\$simp),][1:trunc(nrow(T2DGWASGene)*0.05),"gene_id"]

> topfishpGenes<-

T2DGWASGene[order(T2DGWASGene\$fishp),][1:trunc(nrow(T2DGWASGene)*0.05),"gene_id"]

The *enrichTest1()* function takes an argument of 'genes' for the candidate genes tested for pathway enrichment, and the argument '*setType*' takes the category ID that defines which category of gene sets will be tested for enrichment. For example, *setType=6* defines the KEGG gene-sets for enrichment test. Description of the category ID can be found at Table 1.

> minpGeneSets KEGG<-enrichTest1(topMinpGenes,setType=6) > names(minpGeneSets KEGG) [1] "enrich_test" "useGenes" "nGenes" "nTopGenes" "setTypeInfo" > head(minpGeneSets KEGG\$enrich test) pid size genesSize effect sd pval 1 2718 4 0.009646184 0.02892126 0.252203325 62 2 2719 32 0 -0.054869945 0.04025669 0.836564565 3 2720 27 2 0.019204129 0.04382593 0.182359889 0 -0.054869945 0.04303621 0.794908305 4 2721 28 5 2722 34 3 0.033365349 0.03905473 0.113359667 6 2723 26 5 0.137437747 0.04466079 0.002345904 > length(minpGeneSets KEGG\$useGenes) [1] 289 > minpGeneSets_KEGG\$nGenes [1] 5267 > minpGeneSets KEGG\$nTopGenes [1] 289 > minpGeneSets KEGG\$setTypeInfo Sid [1] 6 \$symbol [1] "c2_kegg" \$name [1] "C2 CP:KEGG: KEGG gene sets" \$description [1] "Gene sets derived from the KEGG pathway database, http://www.genome.jp/kegg/pathway.html" For the candidate genes selected by *minP* measure, the *enrichTest1()* function returned the results to the *minpGeneSets_KEGG* variable, which consists of a data frame of "*enrich_test*", an integer vector of "*useGenes*", a number of "*nGenes*", a number of "*nTopGenes*" and a list of "*setTypeInfo*". The "*enrich_test*" shows the enrichment test results for every gene set in the specified category defined by *setType*. The "*useGenes*" lists the effective candidate genes used for enrichment test. The "*nGenes*" is the total number of genes in the specified category and the "*nTopGenes*" is the number of effective candidate genes for enrichment test. The analysis above indicated that the KEGG category contains *5,267* genes, of which *289* genes are candidates, and the test aims to identify which gene set in the KEGG category is significantly enriched for the *289* candidate genes. The "*setTypeInfo*" presents description of the specified category, *KEGG*.

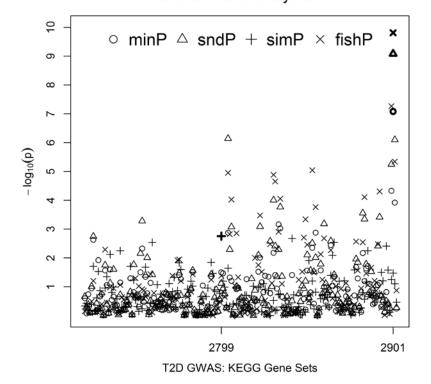
> minpGeneSets KEGG\$enrich test[order(minpGeneSets KEGG\$enrich test\$pval),][1:10,] pid size genesSize 184 2901 183 2900 185 2902 116 2833 117 2834 134 138 2855 70 86 2803 267 2723 26 6 147 2864 47 7 0.09406623 0.03321728 3.600516e-03 136 2853 70 9 0.07370148 0.02721849 4.478571e-03 > sndpGeneSets_KEGG<-enrichTest1(topsndpGenes,setType=6)</pre> > sndpGeneSets_KEGG\$enrich_test[order(sndpGeneSets_KEGG\$enrich_test\$pval),][1:10,] pid size genesSize effect sd pval 184 2901 19 0.19797798 0.02547334 8.286438e-10 76 33 0.07157348 0.01359055 7.224809e-07 86 2803 267 92 185 2902 17 0.13276058 0.02315255 8.001061e-07 85 201 183 2900 15 0.12444856 0.02408703 5.658256e-06 113 2830 23 0.06240584 0.01566371 9.876542e-05 117 2834 134 17 0.07484365 0.01918405 1.711858e-04 166 2883 52 9 0.12105490 0.03079577 2.786636e-04 54 176 2893 9 0.11464464 0.03022010 3.843800e-04 167 2884 65 10 0.10182413 0.02754457 4.479005e-04 5 0.18607321 0.04845997 5.245832e-04 35 2752 21 > simpGeneSets KEGG<-enrichTest1(topsimpGenes,setType=6)</p> > simpGeneSets_KEGG\$enrich_test[order(simpGeneSets_KEGG\$enrich_test\$pval),][1:10,] pid size genesSize effect sd pval 82 2799 44 6 0.09573330 0.02976404 0.001760317 71 124 2841 8 0.07204572 0.02343090 0.002118911 25 25 41 2758 4 0.11936966 0.03948646 0.002884391 149 2866 4 0.11936966 0.03948646 0.002884391 180 2897 38 5 0.09094861 0.03202775 0.003892430 22 2739 29 4 0.09730069 0.03666226 0.005649881 29 169 2886 4 0.09730069 0.03666226 0.005649881 16 2733 31 4 0.08840192 0.03545989 0.007568922 148 2865 44 5 0.07300602 0.02976404 0.008132063 134 2851 48 5 0.06353633 0.02849690 0.012362053

> fishpGeneSets_KEGG<-enrichTest1(topfishpGenes,setType=6)</p>
> fishpGeneSets_KEGG\$enrich_test[order(fishpGeneSets_KEGG\$enrich_test\$pval),][1:10,]

pid	size	genesSize	effect	sd	pval
184 2901	76	21	0.21764862	0.02695643	1.547159e-10
183 2900	85	19	0.16486224	0.02548941	5.432837e-08
185 2902	92	17	0.12611544	0.02450052	4.564353e-06
136 2853	70	14	0.14133283	0.02808796	9.070141e-06
86 2803	267	33	0.06492833	0.01438181	1.115548e-05
113 2830	201	27	0.07566119	0.01657567	1.306251e-05
114 2831	84	15	0.11990426	0.02564068	2.224456e-05
176 2893	54	11	0.14503653	0.03197955	4.944214e-05
167 2884	65	12	0.12594821	0.02914825	7.779820e-05
117 2834	134	19	0.08312387	0.02030097	8.851877e-05

> getGeneSetInfo(2901)

> getGeneSetInfo(2799)



Enrichment Analysis I

Figure 2. Empirical p-values of KEGG gene sets by enrichment analysis I

The top 10 gene sets for each gene measure were shown above. The $-log_{10}$ (*empirical p-values*) for every gene set was plotted at Figure 2. The four gene measures selected different candidate genes for enrichment test, which caused the pathway test results varied over the measures. The most enriched gene set was pathway of 'arrhythmogenic right ventricular cardiomyopathy' (*PID=2901*) for *minP*, *sndP* and *fishP*, and it was pathway of 'nucleotide excision repair' (*PID=2799*) for *simP*. The pathway of '2901', containing 76 genes, involves 17 candidate genes from *minP* (*effect=16.9%*, *p_e=8.31E-08*), 19 candidate genes from 2ndP (*effect=19.8%*, *p_e=8.29E-10*) and 21 candidate genes from *fishP* (*effect=21.8%*, *p_e=1.55e-10*); and the pathway of '2799', containing 44 genes, involves 6 candidate genes from *simP* (*effect=9.6%*, *p_e=1.76E-03*). All component genes for a particular gene set can be identified by the function getGeneSetInfo() function, e.g. getGeneSetInfo(2901) where 2901 is the pathway ID.

Different pathways may share common genes and these pathways will be dependent, potentially leading to an inflated type I error. To adjust for this issue and multiple testing, the *enrichTest1_Perm()* function applies a permutation-based test to obtain the adjusted p-value (*p_perm*) for pathway enrichment.

The most enriched gene set by every gene measure is prepared for permutation test and the R codes are as below:

> KEGG_rst<-

rbind(minpGeneSets_KEGG\$enrich_test[minpGeneSets_KEGG\$enrich_test\$pval==min(minpGeneSets_KE GG\$enrich_test\$pval),],

sndpGeneSets_KEGG\$enrich_test[sndpGeneSets_KEGG\$enrich_test\$pval==min(sndpGeneSets_KEGG\$en
rich_test\$pval),],

simpGeneSets_KEGG\$enrich_test[simpGeneSets_KEGG\$enrich_test\$pval==min(simpGeneSets_KEGG\$en rich_test\$pval),],

fishpGeneSets_KEGG\$enrich_test[fishpGeneSets_KEGG\$enrich_test\$pval==min(fishpGeneSets_KEGG\$en rich_test\$pval),]

simpGeneSets_KEGG\$enrich_test[simpGeneSets_KEGG\$enrich_test\$pval==min(simpGeneSets_KEGG\$en rich_test\$pval),],

fishpGeneSets_KEGG\$enrich_test[fishpGeneSets_KEGG\$enrich_test\$pval==min(fishpGeneSets_KEGG\$enrich_test\$pval),])

> KEGG_rst<-cbind(measure=c("minp","2ndp","simp","fishp"),

topGenes=c(minpGeneSets_KEGG\$nTopGenes,sndpGeneSets_KEGG\$nTopGenes,

simpGeneSets_KEGG\$nTopGenes,fishpGeneSets_KEGG\$nTopGenes), KEGG_rst)

> colnames(KEGG_rst)<-c("measure", "topGenes","pid","size","setTopGenes","effect","sd","p")</pre>

Results of the most enriched pathway for every gene measure were saved to *KEGG_rst* variable and the results were shown below:

> KEGG_rst

	measure	topGenes	pid	size	setTopGenes	effect	sd	р
184	minp	289	2901	76	17	0.1688143	0.02612199	8.314768e-08
1841	2ndp	274	2901	76	19	0.1979780	0.02547334	8.286438e-10
82	simp	214	2799	44	6	0.0957333	0.02976404	1.760317e-03
1842	fishp	309	2901	76	21	0.2176486	0.02695643	1.547159e-10

The *enrichTest1_Perm()* function was applied to get permutation distribution table for calculating permutation p-value of the most enriched pathway. The argument of *geneSize* defines the number of effective candidate genes for enrichment test *I* of the target gene set. The argument of *setType* defines the category of gene sets for permutation adjusting. The argument of *times* specifies the number of permutations for generating distribution table and the argument of *seed* assigns a random seed for permutation.

> minp_dist=enrichTest1_Perm(geneSize=KEGG_rst[1,"topGenes"], setType=6,times=1000, seed=1)
> sndp_dist=enrichTest1_Perm(geneSize=KEGG_rst[2,"topGenes"], setType=6,times=1000, seed=1)
> simp_dist=enrichTest1_Perm(geneSize=KEGG_rst[3,"topGenes"], setType=6,times=1000, seed=1)
> fishp_dist=enrichTest1_Perm(geneSize=KEGG_rst[4,"topGenes"], setType=6,times=1000, seed=1)

The minimum p-value of the KEGG category (setType=6) was extract to construct the distribution table and calculate permutation p-value (p_perm)

> minp_min=apply(minp_dist,2,min)

> sndp_min=apply(sndp_dist,2,min)

> simp_min=apply(simp_dist,2,min)

> fishp_min=apply(fishp_dist,2,min)

> KEGG_rst\$p_perm<-c(sum(minp_min<=KEGG_rst[1,"p"]),sum(sndp_min<=KEGG_rst[2,"p"]), sum(simp_min<=KEGG_rst[3,"p"]),sum(fishp_min<=KEGG_rst[4,"p"]))/1000</pre>

> KEGG_rst

The results were summarized at Table 2. The gene set of '2901' has $p_perm<1e-03$ for enrichment of candidate genes from *minP*, 2ndP and fishP, and the gene set of '2799' has $p_perm=0.463$ for enrichment of candidate genes from *simP*

Table 2. The most enriched KEGG pathway of T2D-GWAS by enrichment analysis I								nalysis I
Measure	Genes	PID	size	setGenes	effect(%)	sd(%)	pe	p_perm
minP	289	2901	76	17	16.9	2.6	8.31E-08	<1e-03
2ndP	274	2901	76	19	19.8	2.5	8.29E-10	<1e-03
simP	214	2799	44	6	9.6	3.0	1.76E-03	0.463
fishP	309	2901	76	21	21.8	2.7	1.55E-10	<1e-03

'Genes': the number of candidate that is taken for enrichment analysis; 'PID': the pathway ID used by *snpGeneSets*. 'size': the number of member genes of a pathway; 'setGenes': the number of candidate genes contained by the pathway.

7.2 Example: Enrichment analysis I of T2D-GWES

For T2D-GWES, the top *5%* genes with the smallest p-values of differential expression were selected as candidate genes and the pathway enrichment test were performed for KEGG gene sets by *enrichTest1()* function.

> topExpGenes<-T2DExpression[order(T2DExpression\$p),][1:trunc(nrow(T2DExpression)*0.05),"gene_id"] > length(topExpGenes) [1] 1009

There are *1,009* candidate genes selected for the enrichment test *I* of KEGG gene sets. However, only *262* genes belongs to the KEGG gene sets and are effectively used for pathway analysis. The 10 most enriched gene sets were saved to *exp_rst* variable.

> expGeneSets_KEGG<-enrichTest1(topExpGenes,setType=6)
 > expGeneSets_KEGG\$nTopGenes
 [1] 262
 > exp rst<-expGeneSets KEGG\$enrich test[order(expGeneSets KEGG\$enrich test\$pval),][1:10,]

> exp_rst

1 u	5.10			patilways o	1120 000	LS by childri	inclife unurysis
	PID	size	setGenes	effect(%)	sd(%)	p _e	p_perm
	2872	53	7	8.2	3.0	4.25E-03	0.764
	2869	23	4	12.4	4.5	4.71E-03	0.788
	2803	267	22	3.3	1.3	6.54E-03	0.874
	2866	25	4	11.0	4.3	6.86E-03	0.906
	2825	47	6	7.8	3.2	7.92E-03	0.932
	2719	32	4	7.5	3.8	1.96E-02	0.995
	2751	44	5	6.4	3.3	2.06E-02	0.997
	2787	22	3	8.7	4.6	2.15E-02	0.997
	2864	47	5	5.7	3.2	2.77E-02	0.999
	2874	35	4	6.5	3.7	2.80E-02	1

Table 3. Ten most enriched KEGG pathways of T2D-GWES by enrichment analysis I

'PID': the pathway ID used by *snpGeneSets*. 'size': the number of member genes of a pathway; 'setGenes': the number of candidate genes contained by the pathway.

The permutation test was applied to obtain permutation adjusted p-value (*p_perm*) by *enrichTest1_Perm()* function.

> exp_dist<-enrichTest1_Perm(geneSize =expGeneSets_KEGG\$nTopGenes, setType=6,times=1000, seed=1)

> exp_min=apply(exp_dist,2,min)

> exp_rst\$p_perm<-unlist(lapply(exp_rst\$pval, function(x) sum(exp_min<=x)/1000))

```
> colnames(exp_rst)=c("pid","size","setTopGenes","effect","sd","p","p_perm")
> exp_rst
> getGeneSetInfo(2872)
```

The enrichment test *I* and its permutation adjustment were summarized at Table 3. The most enriched gene set is the pathway of 'Amyotrophic lateral sclerosis' (*PID=2872*) that contains 53 member genes. The pathway presented enrichment effect of 8.2% with empirical p_e =4.25*E*-03, but the test based on 1,000 permutations showed that the adjusted p-value was 0.764.

8. Pathway Enrichment Analysis *II* of GWS genes

The type II analysis is a specialized pathway enrichment analysis that aims to identify enriched gene sets based on genome-wide association and expression study results. The analysis can be performed by *enrichTest2()* function, which test for pathway enrichment by the *USGSA* method. The test depends the threshold of *U*-score that defines genome-wide significant genes. The default value of threshold is *0.05* for *enrichTest2()*, which assumes that 5% of genome-wide genes are involved in pathway of studied phenotype.

8.1 Example: Enrichment analysis II of T2D-GWAS

Measures of *minP*, 2*ndP*, *simP* and *fishP* or their *U*-scores can all be applied for pathway enrichment test. The required parameter of *geneDF* for *enrichTest2()* function is a data frame which contains at least a column of *'gene_id'* for Entrez gene IDs and a column of *'score'* for a gene measure or *U*-score. The argument of *'setType'* defines the pathway category for enrichment test. For the T2D-GWAS, the example below used *U*-score of *minp* measure for the analysis and *'setType=6'* limited enrichment analysis to pathways of the KEGG category.

> e2_minp<-enrichTest2(geneDF = data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$minp), setType=6)

> names(e2 minp) [1] "enrich_test" "useGenes" "nGenes" "nSigGenes" "setTypeInfo" > head(e2 minp\$enrich test) pid size genes sigGenes effect sd pval 4 0.01146787 0.03573107 0.256079675 1 2718 62 50 0 -0.06853213 0.05157336 0.818895315 2 2719 32 24 3 2720 27 18 2 0.04257898 0.05955179 0.121221901 28 22 4 2721 0 -0.06853213 0.05386662 0.791100789 5 2722 34 24 3 0.05646787 0.05157336 0.077531279 6 2723 26 25 5 0.13146787 0.05053137 0.005729825

> length(e2_minp\$useGenes)
[1] 4217

> e2_minp\$nGenes
[1] 4217
> e2_minp\$nSigGenes
[1] 289
> e2_minp\$setTypeInfo
^{\$id}
[1] 6
\$symbol
[1] "c2_kegg"
\$name
[1] "C2_CP:KEGG: KEGG gene sets"
\$description
[1] "Gene sets derived from the KEGG pathway database, http://www.genome.jp/kegg/pathway.html"

	pid	size	genes	sigGenes	effect	sd	pval
184	2901	76	69	17	0.17784468	0.03041631	4.626583e-07
183	2900	85	76	14	0.11567839	0.02898173	1.496373e-04
185	2902	92	81	14	0.10430737	0.02807298	3.136454e-04
116	2833	75	70	11	0.08861073	0.03019827	2.482412e-03
117	2834	134	120	16	0.06480120	0.02306431	2.997884e-03
138	2855	70	65	10	0.08531402	0.03133822	4.127198e-03
86	2803	267	237	26	0.04117251	0.01641183	5.435991e-03
6	2723	26	25	5	0.13146787	0.05053137	5.729825e-03
35	2752	21	18	4	0.15369009	0.05955179	5.956215e-03
9	2726	17	12	3	0.18146787	0.07293575	6.886650e-03

>e2_minp\$enrich_test[order(e2_minp\$enrich_test\$pval),][1:10,]

For *U*-score of *minP*, the *enrichTest2()* function returned the results to the *e2_minp* variable, which consists of a data frame of *"enrich_test"*, an integer vector of *"useGenes"*, a number of *"nGenes"*, a number of *"nSigGenes"* and a list of *"setTypeInfo"*. The *"enrich_test"* shows the enrichment test results for every gene set in the specified category defined by *setType*. The *"useGenes"* lists GWS genes used for enrichment test. The *"nGenes"* is the total number of GWS genes in the specified category (i.e. the length of *"useGenes"*) and the *"nSigGenes"* is the number of GWS significant genes for enrichment test. The *"setTypeInfo"* presents description of the specified category.

The examples below similarly used U-scores of 2ndP, simP and fishP for pathway tests.

(Notes: Either a gene measure or its U-score can be used for type II pathway test. Since a gene measure will automatically be converted to its U-score by enrichTest2 function, they will present the same results.)

> e2_sndp<-enrichTest2(geneDF = data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$sndp), setType=6) > e2_sndp\$enrich_test[order(e2_sndp\$enrich_test\$pval),][1:10,]

	pid	size	genes	sigGenes	effect	sd	pval
184	2901	76	69	19	0.21038722	0.02967294	5.799842e-09
185	2902	92	81	17	0.14490144	0.02738688	2.677123e-06
86	2803	267	237	33	0.07426541	0.01601072	6.431854e-06
183	2900	85	76	15	0.13239332	0.02827342	2.025952e-05
113	2830	201	180	23	0.06280268	0.01837168	4.965014e-04
117	2834	134	120	17	0.07669157	0.02250062	6.261319e-04
35	2752	21	18	5	0.21280268	0.05809635	6.794323e-04
166	2883	52	47	9	0.12651426	0.03595308	6.859949e-04
176	2893	54	50	9	0.11502490	0.03485781	1.144063e-03
167	2884	65	59	10	0.10451642	0.03208921	1.208255e-03

> e2 simp<-enrichTest2(geneDF =

data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$simp), setType=6)

> e2_simp\$enrich_test[order(e2_simp\$enrich_test\$pval),][1:10,]

	pid	size	genes	sigGenes	effect	sd	pval
124	2841	71	50	8	0.10925302	0.03103924	0.000765214
82	2799	44	35	6	0.12068159	0.03709899	0.001563236
149	2866	25	18	4	0.17147525	0.05173207	0.001598354
180	2897	38	28	5	0.12782445	0.04147793	0.002341210
16	2733	31	20	4	0.14925302	0.04907735	0.002661440
41	2758	25	21	4	0.13972921	0.04789459	0.003351116
148	2865	44	35	5	0.09211017	0.03709899	0.007499138
22	2739	29	26	4	0.10309918	0.04304368	0.008809557
134	2851	48	37	5	0.08438816	0.03608238	0.009872187
76	2793	36	27	4	0.09740117	0.04223906	0.010375498

> e2_fishp<-enrichTest2(geneDF =

data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$fishp), setType=6)

> e2_fishp\$enrich_test[order(e2_fishp\$enrich_test\$pval),][1:10,]

	pid	size	genes	sigGenes	effect	sd	pval
184	2901	76	69	21	0.23107299	0.03137100	1.276659e-09
183	2900	85	76	19	0.17672516	0.02989139	2.700813e-07
185	2902	92	81	17	0.13660170	0.02895412	1.470682e-05
136	2853	70	61	14	0.15623336	0.03336476	2.143464e-05
114	2831	84	75	15	0.12672516	0.03009001	7.509137e-05
86	2803	267	237	33	0.06596567	0.01692695	8.415314e-05
113	2830	201	180	27	0.07672516	0.01942302	8.888730e-05
88	2805	178	149	23	0.08108758	0.02134813	1.658807e-04
176	2893	54	50	11	0.14672516	0.03685258	1.858624e-04
167	2884	65	59	12	0.13011499	0.03392555	2.533609e-04

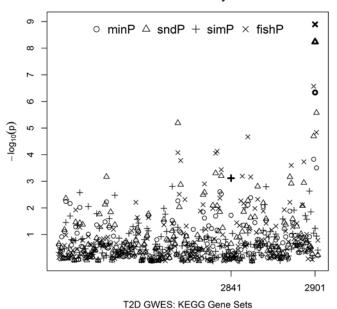
The top 10 gene sets for each gene measure were shown above. The $-log_{10}(empirical p-values)$ for every gene set was plotted at Figure 3. Consistent with the type *I* analysis, the most enriched gene set is the pathway of *PID=2901* for *minP*, *2ndP* and *fishP* measures (Figure 3). However, the most enriched pathway for *simP* is the 'RIG-I-like receptor signaling pathway' (*PID=2841*) in contrast to the pathway of *PID=2799* by enrichment analysis *I*.

> KEGG_rst<-rbind(

e2_minp\$enrich_test[e2_minp\$enrich_test\$pval==min(e2_minp\$enrich_test\$pval),], e2_sndp\$enrich_test[e2_sndp\$enrich_test\$pval==min(e2_sndp\$enrich_test\$pval),], e2_simp\$enrich_test[e2_simp\$enrich_test\$pval==min(e2_simp\$enrich_test\$pval),], e2_fishp\$enrich_test[e2_fishp\$enrich_test\$pval==min(e2_fishp\$enrich_test\$pval),])

```
> KEGG_rst<-cbind(measure=c("minp","2ndp","simp","fishp"),
topGenes=c(e2_minp$nSigGenes,e2_sndp$nSigGenes,
e2_simp$nSigGenes,e2_fishp$nSigGenes), KEGG_rst)
```

> KEGG_rst



Enrichment Analysis II

Figure 3. Empirical p-values of KEGG gene sets by enrichment analysis II

For enrichment analysis *II*, the pathway of '2901', containing 69 GWAS genes, involves 17 significant genes from *minP* (*effect=17.8%*, p_e =4.63*E*-07), 19 significant genes from 2ndP (*effect=21.0%*, p_e =5.80*E*-09) and 21 significant genes from *fishP* (*effect=23.1%*, p_e =1.28*E*-09); and the pathway of '2841', containing 50 GWAS genes, involves 8 significant genes from *simP* (*effect=10.9%*, p_e =7.65*E*-04) (Table 4).

To adjust for pathway dependence and multiple testing, the *enrichTest2_Perm()* function calculates the adjusted p-value (*p_perm*) by *1,000* permutations. The argument of *geneDF* is the data frame for enrichment test II by *enrichTest2()* function. The argument of *setType* defines the category of gene sets for permutation adjusting. The argument of *times* specifies the number of permutations for generating distribution table and the argument of *seed* assigns a random seed for permutation. The permutation

adjusted p-value (p_perm) was shown in Table 4. The p_perm is <1E-3, <1E-3, 0.306 and <1E-3 for the most enriched pathways based on gene measures of *minP*, 2ndP, simP and fishP respectively.

Table 4. The most enficied Redd pathway of T2D-dwas by enficiment and							ent analysi	5 11		
	Measure	Genes	PID	size	setGenes	effect(%)	sd(%)	p_e	p_perm	p_table
	minp	289	2901	69	17	17.8	3.0	4.63E-07	<1E-3	0.0003
	2ndp	274	2901	69	19	21.0	3.0	5.80E-09	<1E-3	<1E-4
	simp	214	2841	50	8	10.9	3.1	7.65E-04	0.306	0.2617
	fishp	309	2901	69	21	23.1	3.1	1.28E-09	<1E-3	<1E-4

Table 4. The most enriched KEGG pathway of T2D-GWAS by enrichment analysis II

'Genes': the number of GWAS significant genes that is taken for enrichment analysis; 'PID': the pathway ID used by *snpGeneSets*. 'size': the number of GWAS genes of a pathway; 'setGenes': the number of GWAS significant genes contained by the pathway.

> minp_dist =

enrichTest2_Perm(data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$minp),
setType=6,times=1000, seed=1)

> sndp_dist =
enrichTest2_Perm(data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$sndp),
setType=6,times=1000, seed=1)

> simp_dist =

enrichTest2_Perm(data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$simp),
setType=6,times=1000, seed=1)

> fishp_dist =
enrichTest2_Perm(data.frame(gene_id=T2DGWASGene\$gene_id,score=T2DGWASGene\$fishp),
setType=6,times=1000, seed=1)

> minp_min=apply(minp_dist,2,min)

> sndp_min=apply(sndp_dist,2,min)

> simp_min=apply(simp_dist,2,min)

> fishp_min=apply(fishp_dist,2,min)

To enable direct calculation of permutation p-value, a pre-generated distribution table based on *10,000* permutations is made [4] and *getEnrich2P()* function is provided to obtain the permutation p-value (p_table) directly. The *p_table* is *3.00E-04*, *<1E-4*, *0.2617* and *<1E-4* for the most enriched pathways based on gene measures of *minP*, *2ndP*, *simP* and *fishP* respectively (Table 4). The codes are shown below:

> KEGG_rst\$p_table<-getEnrich2P(setP=KEGG_rst\$p, setType=6)\$perm\$p

> KEGG_rst

8.2 Example: Enrichment analysis II of T2D-GWES

For type II enrichment analysis of GWES, differential expression p-value is typically used as measure of gene effect. As pathway analysis of GWAS, both gene measure and its calculated *U*-score can be applied to test pathway enrichment by *enrichTest2* function. For the example of T2D-GWES data, the default value of *U*-score threshold=0.05 were used for enrichment test of KEGG pathways (i.e. *setType=6*).

> expGeneSets_KEGG<enrichTest2(data.frame(gene_id=T2DExpression\$gene_id,score=uscore(T2DExpression\$p)),

setType=6)

The 10 most enriched pathways for significant GWES genes were identified as below and results were saved to *exp_rst* variable.

> exp_rst<-expGeneSets_KEGG\$enrich_test[order(expGeneSets_KEGG\$enrich_test\$pval),][1:10,]

The permutation test was applied to obtain permutation p-value (*p_perm*) by *enrichTest2_Perm()* function.

> exp_dist = enrichTest2_Perm(data.frame(gene_id=T2DExpression\$gene_id,p=uscore(T2DExpression\$p)),

setType=6,times=1000, seed=1)

> exp_min=apply(exp_dist,2,min)

> exp_rst\$p_perm<-unlist(lapply(exp_rst\$pval, function(x) sum(exp_min<=x)/1000))

To enable direct calculation of permutation p-value, a pre-generated distribution table based on *10,000* permutations [4] is made and *getEnrich2P()* function is provided to obtain the permutation p-value (p_table) directly.

```
> exp_rst$p_table<-getEnrich2P(setP=exp_rst$pval, setType=6)$perm$p
```

> exp_rst

The results of enrichment analysis II for T2D-GWES were shown at Table 5, and 9 of them were also shown as the top 10 pathways by enrichment analysis I. The most enriched pathway is the same for both type *I* and *II* analysis, which is the pathway of '2872' with effect=7.9% and empirical p-value=7.28E-03. However, the 1,000 permutations got the $p_perm=0.889$ and pre-generated distribution table showed the $p_table=0.9118$.

PID	size	setGenes	effect(%)	sd(%)	p e	p_perm	p_table
2872	52	7	7.90	3.18	7.28E-03	0.889	0.9118
2866	23	4	11.83	4.78	7.51E-03	0.912	0.9194
2869	23	4	11.83	4.78	7.51E-03	0.912	0.9194
2825	46	6	7.49	3.38	1.25E-02	0.988	0.9808
2803	259	22	2.94	1.42	1.61E-02	0.996	0.9918
2719	29	4	8.24	4.25	2.02E-02	0.998	0.9967
2751	40	5	6.94	3.62	2.17E-02	0.999	0.9977
2787	20	3	9.44	5.12	2.23E-02	0.999	0.998
2746	44	5	5.81	3.45	3.32E-02	1	0.9999
2874	34	4	6.21	3.93	3.78E-02	1	1

Table 5. Ten most enriched KEGG pathways of T2D-GWES by enrichment analysis II

PID': the pathway ID used by *snpGeneSets*. 'size': the number of GWAS genes of a pathway; 'setGenes': the number of GWAS significant genes contained by the pathway.

9. Pathway Enrichment Analysis of GWAS by ALIGATOR

The ALIGATOR (Association LIst Go AnnoTatOR)[8] method is also implemented in the *snpGeneSets* package by the function *alligator()*. The method tests pathway enrichment for GWAS significant gene that is defined through p-value threshold *pcut* of SNP association. The default value of *pcut* is 0.05 for *alligator()*, and any gene with a SNP p-value < *pcut* is defined as significant. The method applies permutation to obtain empirical unadjusted p-value and the number of permutation is defined through parameter *Nsample* that takes default value of *5000*. The adjusted p-value is obtained through bootstrap sampling and the number of bootstrapping is set through parameter Btimes that takes default value of *1000*.

The example below shows the analysis of pathway enrichment for T2DGWAS by ALIGATOR method. The first parameter *snpGeneP* is a data frame containing at least columns of '*snp*' (SNP rsid), '*gene_id*' (Entrez gene ID) and '*p*' (SNP association p-value). The data of *T2DGWAS* comes with the *snpGeneP* data frame and *pcut* of 0.001 is applied to test pathway enrichment.

> data(T2DGWAS)
>head(snpGeneP)
> path0=aligator(snpGeneP, pcut=0.001)
> path0[order(path0\$p),][1:10,]

	pid	р	adj_p
4243	7717	0.0004	0.609
2133	5607	0.0010	0.827
3358	6832	0.0012	0.858
4270	7744	0.0014	0.886
28	2745	0.0022	0.953
4526	8000	0.0030	0.980
4106	7580	0.0032	0.983
4630	8104	0.0044	0.995
4164	7638	0.0046	0.997
16	2733	0.0054	0.999

It was shown that the first pathway with *pid*=7717 has empirical unadjusted p-value of 4E-04, but the permutation adjusted p-value is 0.609.

References:

- 1. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: **dbSNP: the NCBI database** of genetic variation. *Nucleic Acids Res* 2001, **29**(1):308-311.
- 2. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at NCBI. *Nucleic Acids Res* 2011, **39**(Database issue):D52-57.
- 3. Liberzon A: A description of the Molecular Signatures Database (MSigDB) Web site. *Methods in molecular biology* 2014, **1150**:153-160.
- 4. Mei H, Li L, Liu S, Jiang F, Griswold M, Mosley T: **The uniform-score gene set analysis for identifying** common pathways associated with different diabetes traits. *BMC genomics* 2015, **16**(1):336.
- 5. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU *et al*: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. *Science* 2007, **316**(5829):1341-1345.
- Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC: Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. *PLoS One* 2010, 5(7):e11499.
- 7. Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. . Statistical Applications in Genetics and Molecular Biology 3, No 1, Article 3 2004.
- 8. Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P, Owen MJ, O'Donovan MC, Craddock N:
 Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. American journal of human genetics 2009, 85(1):13-24.